
AllThingsTalk Binary Conversion
Language (ABCL)
1.3.0

Intro
AllThingsTalk Binary Conversion Language (ABCL) 1.3.0 is a JSON-based, domain specific
language, used for encoding and decoding AllThingsTalk asset data to and from binary
payloads (e.g. LoraWAN payloads).

Copyright © 2016-2019 AllThingsTalk

Permission is hereby granted, free of charge, to any person obtaining a copy of this
specification and associated documentation files (the “specification”), to use, copy, publish,
and/or distribute, the Specification) subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies of the
Specification.

You may not modify, merge, sublicense, and/or sell copies of the Specification.

THE SPECIFICATION IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SPECIFICATION OR THE USE OR OTHER DEALINGS IN THE SPECIFICATION.

Any sample code included in the Specification, unless otherwise specified, is licensed under the
Apache License, Version 2.0.

This document is modeled after https://states-language.net/spec.html

http://www.json.org/
https://www.lora-alliance.org/portals/0/specs/LoRaWAN%20Specification%201R0.pdf
https://states-language.net/spec.html

Table of contents
Intro 1

Table of contents 2

Structure of a conversion 4
Example: Home alarm system 4

Top-level fields 5

Statements 5
Statement blocks 5
Mapping statements 7

Locations 7
Sense block 8
Actuate block 8
Paths 8

Control statements 9
Example 9

Case statements 9
Comment statement 10

Selectors 10
Const selectors 10

Examples 10
Payload selectors 11

Examples 11
byte, bytelength, bit, bitlength 11
type, byteorder, format, signed 12
Calculations 12

Example 13
JSON selectors 13
Special selectors 13

$asset 13
$default 14
$payload 14
$payloadLength 14
$meta[Port | RSSI | SNR | GatewayName | Timestamp | Latitude, Longitude] 14
$timestamp and $metaTimestamp 14

Composite selectors 14
Object composite selector 15

Escaping 15
Full example 15

List composite selector 16

Appendix A: Conversion examples 17
Containers 17

Structure of a conversion
The goal of ABCL is to provide an easy way of defining a schema for decoding freeform third
party binary payloads.

A set of mappings in ABCL specific to a device type is called a Conversion. Conversions are
encoded as JSON objects.

Example: Home alarm system
{
 "name": "alarm",
 "comment": "Home alarm system",
 "version": "1.0.0",
 "sense": [

{"asset": "movement", "value": {"byte": 0, "type": "boolean"}}
],
 "actuate": [

{"asset": "reset", "field": {"byte": 0, "type": "boolean"}}
]
}

In this example, we declare a Conversion used with a home alarm system device. This simple
device contains two assets.

For device:
{
...

"assets": [
{"name": "movement", "is": "sensor", "profile": {"type": "boolean"}},
{"name": "reset", "is": "actuator", "profile": {"type": "boolean"}}

]
}

First is a boolean sensor named “movement”, that changes its state to True when there’s
movement in the house. From that point, “movement” stays True, until the second asset, a
boolean actuator named “reset”, is actuated with command True. This resets the device, which
then continues sending “movement” as False (heartbeat) until it senses movement again.

The payload that this device is sending (uplink payload) is a single byte. When it’s equal to
0x00, the value of “movement” asset gets set to False. Otherwise, its value is set to True.

The payload that this device is receiving (downlink payload) is a single byte. It’s set to 0x01
when “reset” actuator is set to True. Otherwise, it’s set to False.

https://tools.ietf.org/html/rfc7159#section-4

Top-level fields
A Conversion MUST have a string field named “name”, whose value represents the name of 1

the conversion and must be unique within the conversion system. For automatically generated
names, using RFC 4122 UUIDs is recommended.

A Conversion MAY have a string field named “comment”, provided for human-readable
description of the conversion.

A Conversion SHOULD have a string field named “version”, whose value indicates the
minimum ABDCL version - using semantic versioning - that needs to be used to execute the
conversion. If this value is not specified, the conversion system is allowed to make its best
guess about the version, and convert appropriately.

A Conversion SHOULD have a list field named “sense”, which contains statements that need
to be evaluated during “sensing” - when deserializing binary payloads received from the device
into sensor and virtual asset values.

A Conversion SHOULD have a list field named “actuate”, which contains statements that need
to be executed during “actuation” - when serializing data from actuator and configuration asset
values into binary payloads that are sent to the device.

Statements
Statements are JSON objects that describe a single operation that needs to be performed in a
conversion.

A statement MUST be either a mapping statement, a control statement, or a comment
statement. Statements appear in statement blocks.

Statement blocks
Statement blocks are JSON lists whose elements are statements or statement blocks that need
to be performed in order to complete the conversion.

A statement block MAY contain no elements. Making a statement block empty is the same as
omitting it altogether - no statements get executed. This can be useful in code generation.

1 In this document, keywords for indicating requirement levels, as specified in RFC 2119 will be used.

https://tools.ietf.org/html/rfc4122
http://semver.org/
https://tools.ietf.org/html/rfc2119

There are three types of statement blocks: sense, actuate, and do. Sense and actuate
statement blocks are executed when sensing (receiving data), and actuating (sending data),
and they are present in the home alarm example. Do is used wherever embedding a statement
block - usually within control structures - is needed.

Mapping statements
Mapping statements are used for serializing and deserializing asset values and metadata to and
from specific parts of binary payloads, special values, variables and constants.

The difference in mapping direction and available metadata fields make for a slight difference
between mapping statements in sense block and mapping statements in actuate block, so these
will be addressed separately.

In Home alarm system example, both of the following are mapping statements:

{"asset": "movement", "value": {"byte": 0, "type": "boolean"}}

{"asset": "reset", "field": {"byte": 0, "type": "boolean"}}

Locations
Locations are JSON keys in mapping statements that identify types of data sources and data
destinations in a given mapping on which selectors in their values should be used.

{
 "sense": [
 {

 "asset": "movement",
 "value": {"byte": 0},
 "at": {"byte": 1, "bytelength": 4},

 "comment": "Movement mapping"
}

],
 "actuate": [
 {

 "const": 3,
 "field": {"byte": 0},

 "comment": "First byte always needs to be set to 3"
},
{
 "asset": "reset",
 "field": {"byte": 1},
}

]
}

In this example, we can see all available locations in sense and actuate statement blocks.

Sense block
Mapping statements in sense block MUST contain a string field “asset”, whose value is a
selector that identifies the asset by name.

Mapping statements in sense block MUST contain a field “value”, whose value is a selector
that identifies the data that will be stored as the new value of the asset.

Mapping statements in sense block MAY contain a field “at”, whose value is a selector that
identifies the data that will be stored as the timestamp at which the data was received. If “at” is
not supplied, the timestamp will be set to the time of conversion execution.

Mapping statements in sense block MAY have a string field named “comment”, provided for
human-readable description of the given mapping.

Actuate block
Mapping statements in actuate block MUST contain a field “field”, whose value is a selector
that identifies the location in payload (or a special variable) to which asset or constant data
needs to be stored.

Mapping statements in actuate block MUST contain either a “const” field or an “asset” field.

The “asset” field’s value MUST be a valid JSON string.

The “const” field’s value MUST be a valid JSON value. If bytearray constants are needed, one
should simply used backslash escapes, as described in json.org string section.

{"const": "\x01\xab", "comment": "This encodes a two element bytearray, [0x01, 0xAB]"}

Constants should be used in cases where payload needs to be filled in with payload format
specific data regardless of asset values - e.g. you might want to prefix all your payloads with a
magic number. Otherwise, you’ll probably want to use an asset.

Mapping statements in actuate block MAY have a string field named “comment”, provided for
human-readable description of the given mapping.

Paths
Asset mappings (mappings that contain asset locations) MAY contain a JSON string field “path”,
whose value is a JSON Path used to select a specific field from asset’s object value. For
example, in actuate block,

http://www.json.org/
https://en.wikipedia.org/wiki/Magic_number_(programming)
http://jsonpath.com/

{"asset": "a", "path": "x", "field": {"byte": 0}}

would set payload’s first byte to a.x. So, if a was {“x”: 3}, first byte would become 3.

Control statements
Control statements are used for executing control logic that MAY lead to executing more
statements. Switch is the only available control statement in this version of ABDCL.

Example

{"switch": {"byte": 0}, "on": [
 {"case": 0, "do": [

{"asset": "movement", "value": {"byte": 1}}]},
 {"case": 1, "do": [

{"asset": "temperature", "value": {"byte": 1}}]},
 {"case": "$default", "do": [
 {"asset": "error", "const": "invalid byte 0"}]}]}

In this example payload’s first byte is selected, and its value is used to determined if the
contents of the second byte will be mapped to the asset named “movement” (if first byte is 0), or
to “temperature” (if first byte is 1). If its none of those, asset “error” gets set to “invalid byte 0”.

Control statement MAY have a string field named “comment”, provided for human-readable
description of the conversion.

Control statements MUST have a JSON object field named “switch” that specifies the selector
that’s going to be evaluated, and its value tested in cases.

Control statements MUST have a JSON array field named “on” that contains a list of cases that
switch value will be tested on.

Control statement on list MAY contain zero or more case statements.

Control statement on list MAY contain a comment statement.

Case statements
Case statement MUST have a JSON object field named “case”, whose value is a selector
whose value is tested with the switch selector’s value in outer switch control statement. If its
equal, do statement block is executed.

Case statement MUST have a JSON list field named “do”, whose value is a do statement block
that is executed if case and switch match.

Case statement MAY have a string field named “comment”, provided for human-readable
description of the conversion.

Comment statement
{"comment": "this is a comment"}

Comment statement MUST have a string field named “comment”.

It can be used wherever statements can be used. It is provided for human-readable descriptions
and has no effect on execution.

Selectors
Selectors are JSON values. They are used to “select” data from a given location type or “select”
data used in a control statement.

Selectors MAY have a string field named “comment”, provided for human-readable description
of the conversion.

Const selectors
Const selectors are constant values described in the section above (actuate block).

Examples

3

"hello"

{"a": "dict"}

"\x01\x02"

["list", "items"]

Payload selectors
Payload selectors are JSON objects that describe locations and lengths of payload chunks, that
need to be read using the supplied format and extracted from the payload.

Examples

{"byte": 1, "bytelength": 3, "type": "integer", "signed": true}

{"byte": 3, "bit": 2, "bitlength": 8, "type": "string"}

{"byte": 4, "bytelength": 4, "byteorder": "big", "type": "number"}

{"byte": 0, "bytelength": 4, "type": "datetime", "format": "epoch"}

{"byte": 1, "bytelength": 3, "type": "integer", "signed": false}

{"byte": 7, "bytelength": 3, "type": "integer", "format": "bcd8421"}

Payload bit and byte order is always big-endian.

byte, bytelength, bit, bitlength
Payload selector MUST have an integer field named “byte”, whose value represents the starting
byte from which the chunk is going to be selected.

Payload selector MAY have an integer field named “bytelength”, whose value represents the
length of the chunk in bytes, starting from and including the byte indexed by “byte” field. It
defaults to 1 (one).

https://drive.draw.io/#G0B0e7wzLaVmSBMHJDXy1hTVhFcTQ

Payload selector MAY have an integer field named “bit”, whose value represents the starting bit
in the starting byte from which the chunk is going to be selected. It defaults to 0 (zero).

Payload selector MAY have an integer field named “bitlength”, whose value represents the
length of the chunk in bits, starting from and including the bit indexed by “bit” field.
Payload selector MUST NOT contain both the “bytelength” and “bitlength”.

type, byteorder, format, signed
Payload selector SHOULD contain a string field named “type”, whose value represents the type
of the value that’s going to be read from the chunk. It defaults to “integer”.

Available types are:

- “integer”: an integer whose bytelength is specified with “bytelength” and its sign by
“signed”. The “format” can also be specified, currently just “bcd8421” which will parse
data as binary coded decimal.

- “number”: an IEEE 754 floating point number. Its precision is determined by
“bytelength”. A bytelength of 2 indicates half precision, a bytelength of 4 indicates single
precision, and a bytelength of 8 indicates double precision.

- “string”: a UTF-8 string.
- “boolean”: a boolean value. If all bits in a chunk are zero, the value is false. Otherwise,

it’s true.
- “datetime”: seconds since UNIX epoch. The chunk is read as a signed integer and

converted to seconds.

Payload selector MAY contain a string field named “byteorder”. Supported byte orders are “big”
and “little” (endian). They designate the byte order in which the selected chunk should be read.
Default byte order is “big”.

Payload selector MAY contain a string field named “format”. Supported formats are type specific
and are described for each type above.

Payload selector MAY contain a boolean field named “signed”. When used with “integer” type, it
designates if the integer is signed or not. It defaults to true.

Calculations
Payload selectors MAY contain a string field “calculation”, whose value is a calculation that
supports basic math operations and functions (+, -, *, /, ** for exponentiation, log, sqrt). The
selected payload chunk is passed to the calculation via variable “val”, and externally, the output
of the calculation becomes the final output value of the selector.

http://academic.evergreen.edu/projects/biophysics/technotes/program/bcd.htm
http://steve.hollasch.net/cgindex/coding/ieeefloat.html
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Endianness

Example

{"asset": "a", "value": {"byte": 0, "calculation": {"val * 2"}}

When this mapping is executed with payload 0x02, the first byte is read, multiplied by two, and
only then stored as the value of asset “a”: 4.

JSON selectors
JSON selector can be used to select a specific field from JSON formatted payload using
standard JSONPath syntax.

Examples

Select longitude from json which has nested “loc” parameter

...
{"asset": "longitude", "value": {"json": "loc.lon"}},
...

When this mapping is executed with payload {“loc”: {“lat”: 44.787, “lon”: 20.457}}, our longitude
asset will have value 20.457

Select first element from array named “sizes”

...
{"asset": "size", "value": {"json": "sizes[0]"}},
...

When this mapping is executed with payload {“sizes”: [40, 41, 42, 43]}, our size asset will have
value 40.

Special selectors
Special selectors are JSON strings prefixed with a dollar sign ($), e.g. “$asset”. They are used
for accessing the available metadata, or data available only in specific contexts. If using a raw
string with the same value as one of the specified special selector names is needed (i.e. using
“$payload” verbatim, not as the reference to the full payload) the dollar sign can be escaped
with another dollar sign: “$$payload”.

$asset
Selects the current asset’s name. It can be used in Actuate Block to identify the asset that
triggered the actuation conversion.

https://restfulapi.net/json-jsonpath/

...
{"asset": "$asset", "field": {"byte": 1, "type": "boolean"}},
...

The snippet above is a bit artificial, but it does show what $asset can do - for any actuated
actuator (it’s assumed that all of systems actuators send boolean commands), it will store its
value into payload’s second byte. The code around it might be used to set the first byte to
indicate which asset was actually actuated to the receiving device.

Also, $asset works very well with switches in actuate block, and its value will be described when
we get to control blocks.

$default
Marks a default value / option. When used with switch control block’s case, it represents a case
that will be executed when no other cases match.

$payload
Full contents of the received payload in sense block as a bytearray.

Besides default array value, string type can be specified. Asset should be type string.

...
{"asset": "payload", "value": "$payload", "type": "string"}},
...

$payloadLength
Length of the received payload in sense block in bytes.

$meta[Port | RSSI | SNR | GatewayName | Timestamp | Latitude,
Longitude]
Meta special variables are optionally populated by network service providers or other data
suppliers.

$timestamp and $metaTimestamp
Seconds from UNIX epoch, marking the start of the conversion ($timestamp) and the timestamp
optionally provided by the network service provider ($metaTimestamp). The final timestamp
output is governed by the output type and format specified in mappings.

{"asset": "timestamp", "value": "$timestamp", "type": "datetime"}

Will set the state for asset named “timestamp” to current ISO 8601 datetime string.

Composite selectors
Composite selectors are used for building JSON objects or JSON lists out of simpler selectors.

They are similar to templates in that whenever a selector (payload, const or special selector) is
found in a composite selector, it’s used to inject a value it selects into the outer composite
selector. The way this works should become more obvious in the following examples.

Object composite selector

{"asset": "gps", "value": {
 "x": {"byte": 8, "bytelength": 4, "type": "number"},
 "y": {"byte": 12, "bytelength": 4, "type": "number"},
 "z": {"byte": 16, "bytelength": 4, "type": "number"}}}

In a sense block, this sets the value of asset named “gps” to a JSON object, with fields x, y, z,
set to listed payload chunks.

Object composite selector is a JSON object value assigned to a location, whose keys don’t
indicate that the given JSON object is actually a selector (for example, a payload selector).

Object composite selectors CAN be multilevel.

Escaping
If a field needs to be named the same as one of the fields specified in language (like “byte”), it
can be escaped with & (ampersand). If a field starting with & is needed, double escapes (&&)
work.

Full example
For payload 0xABCD,

{"asset": "complex", "value": {
 "&byte": {"a": 4},
 "&&payloadLength": "$payloadLength",
 "x": {"byte": 1}}}

will set asset named “complex” to

{

 "byte": {"a": 4},
 "&payloadLength": 2,
 "x": -51
}

List composite selector
List composite selector functions similarly to object composite selector, except that it creates a
list (which is denoted by a pair of square brackets surrounding its content).

For payload 0xABCD,

{"asset": "pair", "value": [{"byte": 0}, {"byte": 1}]}

will set asset named “pair” to

[171, 205]

Appendix A: Conversion examples

Containers

{
 "name": "containers",
 "version": "1.0.0",
 "sense": [

{"switch": {"byte": 4}, "on": [
 {"case": 1, "comment": "Binary sensor", "do": [

{"asset": "1", "value": {"byte": 5, "type": "boolean"}}]},
 {"case": 2, "comment": "Tilt sensor", "do": [

{"asset": "2", "value": {"byte": 5, "type": "boolean"}}]},
 {"case": 3, "comment": "Push button", "do": [

{"asset": "3", "value": {"byte": 5, "type": "boolean"}}]},
 {"case": 4, "comment": "Door sensor", "do": [

{"asset": "4", "value": {"byte": 5, "type": "boolean"}}]},
 {"case": 5, "comment": "Temp sensor", "do": [

{"asset": "5", "value": {"byte": 8, "bytelength":4, "type": "number"}}]},
 {"case": 6, "comment": "Light sensor", "do": [

{"asset": "6", "value": {"byte": 8, "bytelength":4, "type": "number"}}]},
 {"case": 7, "comment": "Temp sensor", "do": [

{"asset": "7", "value": {"byte": 5, "type": "boolean"}}]},
 {"case": 8, "comment": "Accelerometer", "do": [

{"asset": "8", "value": {
 "x": {"byte": 8, "bytelength": 4, "type": "number"},
 "y": {"byte": 12, "bytelength": 4, "type": "number"},
 "z": {"byte": 16, "bytelength": 4, "type": "number"}}}]},

 {"case": 9, "comment": "GPS", "do": [
{"asset": "9", "value": {
 "latitude": {"byte": 8, "bytelength": 4, "type": "number"},
 "longitude": {"byte": 12, "bytelength": 4, "type": "number"},
 "altitude": {"byte": 16, "bytelength": 4, "type": "number"}}}]},

 {"case": 10, "comment": "Pressure sensor", "do": [
{"asset": "10", "value": {"byte": 8, "bytelength":4, "type": "number"}}]},

 {"case": 11, "comment": "Humidity sensor", "do": [
{"asset": "11", "value": {"byte": 8, "bytelength":4, "type": "number"}}]},

 {"case": 12, "comment": "Loudness sensor", "do": [
{"asset": "12", "value": {"byte": 8, "bytelength":4, "type": "number"}}]},

 {"case": 13, "comment": "Air quality sensor", "do": [
{"asset": "13", "value": {"byte": 7, "bytelength":2, "type": "integer"}}]},

 {"case": 14, "comment": "Battery sensor", "do": [
{"asset": "14", "value": {"byte": 7, "bytelength":2, "type": "integer"}}]},

 {"case": 15, "comment": "Integer sensor", "do": [
{"asset": "15", "value": {"byte": 7, "bytelength":2, "type": "integer"}}]},

 {"case": 16, "comment": "Number sensor", "do": [
{"asset": "16", "value": {"byte": 8, "bytelength":4, "type": "number"}}]}

]}
]
}

